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Abstract—Rendering virtual objects into real scenes with
real illumination can greatly increase the realism of virtual
objects and the consistency between the virtual and the real.
The main challenge lies in illumination estimation from a single
image. This article proposes a novel method of single image
based illumination estimation for lighting virtual object in real
scene. Only a single image, without any knowledge of the 3D
geometry or reflectance, is needed, which greatly increases the
applicability of the method. We first estimate coarse scene
geometry and intrinsic components including shading image
and reflectance image. Then the sparse radiance map of the
scene is inferred based on the scene geometry and intrinsic
components. Finally, the virtual objects are illuminated by
the estimated sparse radiance map. Some experimental results
show that this method can convincingly light virtual objects
into a single real image, without any pre-recorded 3D geometry
and reflectance, illumination acquisition equipments or imaging
information of the image.

Keywords-illumination estimation; geometry estimation; in-
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I. INTRODUCTION

Rendering virtual objects into real scenes has been widely
employed in city planning, art design and film production.
The realism of virtual objects and the consistency of virtual
objects against real scene are determined to a great extent by
the lighting effects. Lighting virtual objects with illumination
from real scene is a hot topic in computer graphics commu-
nity. The main challenge lies in illumination estimation from
a single image.

In early works, pre-recorded scene geometry and re-
flectance are often required to infer the illumination dis-
tribution of the scene (e.g.[1]). Then scene illumination is
recorded as a radiance map by various light probes located in
real scenes (e.g.[2]). The requirement of pre-recorded scene
geometry and reflectance or pre-located light probes limits
the application of these methods.

Recently, researchers have been trying to estimate scene
illumination from only a single image. Most of them use a
sun and sky doom model to treat outdoor images [3], [4].
Most recently, Mei et al. [5] recover illumination from image
with cast shadows via sparse representation. However, cast
shadows must appear in their scenario.

We propose a novel method of single image based illu-
mination estimation for lighting virtual object in real scene.
We aim to use only a single image without any knowledge
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Figure 1. The objective. We estimate the illumination of the scene for
lighting a virtual chair into a real scene. The virtual chair matches the
existing image in lighting effects and cast convincing shadows on the real
scene rendered with the estimated illumination.

of the 3D geometry , reflectance or imaging information.
Then we use the estimated illumination for lighting virtual
objects in real scene of a single image (see Figure 1).

Lalonde et al. [4] directly use the three most evident
appearance cues to estimate the illumination in a scene.



In recent years, scene understanding from a single image
has attracted plenty of researchers. The estimation of scene
geometry (e.g. [6]) and intrinsic components (including
shading and reflectance images, e.g. [7]) has achieved great
success in some scenarios. Scene appearance is mostly
determined by scene geometry, reflectance and illumination.
We are thus inspired to estimate scene illumination through
current scene understanding technologies.

Unlike [4], we first estimate coarse scene geometry and
intrinsic components from various cues. Then we use a
simple illumination model based on sparse radiance map
to represent scene illumination via the estimated scene
geometry and intrinsic components. The sparse radiance map
contains several sparse and discrete directional light sources
evenly distributed on the half sphere around the scene (see
Figure 4). Finally, the virtual objects are illuminated by
the estimated sparse radiance map. This can be regarded
as a step-by-step way from appearance cues to estimate
geometry and intrinsic components and then to estimate
illumination of the scene. Some experiment results show
that this method can convincingly light virtual objects into
a single real image, without any illumination acquisition
equipments, imaging information or human interactions.

The main contribution of this article is the usage of a
simple sparse radiance map based illumination model to
combine the estimated geometry and intrinsic components
to estimate the scene illumination.

II. RELATED WORK

We will briefly review related work in four aspects: illumi-
nation estimation, geometry estimation, intrinsic component
estimation and object relighting.

Illumination estimation. Several works estimate illumi-
nation with the help of pre-recorded 3D geometry model
and reflectance such as [8]. Our work relies on only a
single image without exact 3D such as geometry and specific
reflectance models. Light probes such as light sphere [2] or
fisheye cameras[9] are located in the real scene to record
scene illumination directly. However, thousands of photos
have been shot and one may have no chance to place light
probes in the scene.

For illumination estimation from outdoor images, Madsen
et al. [3] need to know the date, time and position on
Earth of the image shooting. They make the assumption
that there is a predominant occurrence of approximately
diffuse surfaces and shadows in the scene, which limits their
application. Moreover, not every photo has recorded the date
or position of the image shooting. Unlike the above methods,
our work tries to estimate scene illumination from only a
single image without any pre-recorded 3D geometry and
reflectance, illumination acquisition equipments or imaging
information of the image.

Lalonde et al. [4] estimate scene illumination from only
a single outdoor image. They use a dataset of 6 million

images for training the illumination inference model and
estimate a sun and sky doom model that is especially for
outdoor images. The three most evident appearance cues(i.e.
the sky, shadows on the ground and the varied intensities of
the vertical surfaces to estimate the direction of light) are
directly employed to estimate the illumination in a scene.
However, with the great achievements in scene understand-
ing (such as geometry and intrinsic component estimation),
we believe that these scene understanding technologies can
help estimate the scene illumination.

Geometry estimation. Recently, rich literatures have
addressed the problem of geometry estimation from a single
image. Hoiem et al. [10] use features of color, texture, edge,
location etc. to recover surface layout (i.e. coarse surface
orientation) from a single image. Saxena et al. [6] use similar
features to directly estimate a 3D scene structure from a
single image, and good performance is shown in various test
images. Liu et al. [11] estimate single image depth with the
help of predicted semantic labels. And Gupta et al. recover a
3D parse tree of a single image through physical reasoning.
For our task, either [6] or [11] can be used to directly output
a coarse 3D scene structure from a single image .

Intrinsic component estimation. The intrinsic image de-
composition, which was first introduced by [12], decompose
a photo into the pixel by pixel product of an illumination
component and a reflectance component. This is an ill-
posed problem and open challenge that has attracted lots of
researchers such as several recent works [7], [13], [14], [15].
Due to the ill-posedness of the problem, automatic methods
are challenged by complex natural images. So Bousseau et
al.[14] propose a user-assisted approach to specify regions of
constant reflectance or illumination for guiding the intrinsic
images decomposition.

Lighting virtual objects. In the community of augmented
reality, which renders 3D models into real scene, researchers
use a simplified version of [2] to achieve real time merging
[16], [17], [18]. They often use pre-recorded scene geometry
or various light probe in the real scenes. Haber et al. [19]
relight objects by recovering the reflectance of a static
scene with known geometry from a collection of images
taken under distant, unknown illumination. However, the
geometry of the scene is estimated from lots of images
containing nearly the same objects. By contrast, in our work
the geometry is estimated from a pre-trained classifier. The
virtual object used in our work is a 3D model with textures
and is illuminated by the estimated sparse radiance map.

III. ILLUMINATION ESTIMATION FOR LIGHTING OBJECTS

The workflow of the proposed method is illustrated in
Figure 2. The geometry and intrinsic component estimation
and lighting with sparse radiance map will be described in
this section.
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Figure 2. The workflow of our method. We estimate the coarse geometry model of the input image. The input image is decomposed into intrinsic
components including a shading image and a reflectance image. Then we combine the coarse geometry model, the shading image and the reflectance image
of the scene to estimate sparse radiance map. Finally the virtual object is illuminated with the estimated sparse radiance map. The virtual chair matches
the input image in lighting effects and cast convincing shadows on the real ground. Although the estimated geometry and intrinsic components are not
accurate in every pixel (see the shadow area under the umbrella in the estimated reflectance image), our estimated illumination is basically right via our
illumination estimation algorithm.

(a)Input (b)3D geometry model (c)Geometry with texture (d)Reflectance image (e)Shading image

Figure 3. (a) is the input image. In this example, (b) is the 3D geometry model estimated by the method of [6]. (c) is the model with the input image
as its texture. (d) and (e) are the shading image and reflectance image estimated by the method of [7].

A. Geometry and intrinsic component

Saxena et al. [6] and Liu et al. [11] use different image
features with similar Markov Random Field (MRF) model
to infer the pixel wise depth map and the 3D geometry
structure of scenes from a single image. Saxena et al. [6] use
features of color, texture, edge, location etc. Liu et al. [11]
adopt semantic and geometry constrains for simple linear
regression method and use the same training set of [6]. In
our implementation, one can choose either [6] or [11] to
directly output a 3D scene structure from a single image. A
example of estimated geometry model is shown in Figure 3.

Our aim is to automatic estimate illumination from a sin-
gle image. So we adopt some automatic methods of intrinsic
component estimation [7], [13], [15]. Each of them can be
leveraged for our task of intrinsic component estimation .

Then we will refine the estimation results based on the sparse
radiance map. An example of estimated shading image and
reflectance image is shown in Figure 3.

B. Lighting with sparse radiance map

Sparse radiance map. Light sources in the real scene
may be of different shapes, directions and distances. Directly
estimating real light sources may result in labour work of
modelling different light sources. We choose light ray model
to approximate the light sources in real scene with a radiance
map, which can be considered as a half light ray sphere
around the whole scene. For more efficient computing, we
adopt a sparse radiance map (see Figure 4) instead of
traditional dense radiance map to determine the main light
rays from various light sources. One can regard the sparse
radiance map as a simplified version of traditional radiance



Figure 4. Sparse radiance map and ray combination (Eq. 1, 2, 3, 4.).The
sparse radiance map contains m sparse and discrete directional light sources
evenly distributed on the half sphere around the scene and directed to the
center point of the ground circle.

map. We make the assumption that these sparse light sources
can approximate the real scene by making a combination of
the estimated light intensity. In the outdoor environment, the
main light source is the sun. So a small m of the number
of the virtual light sources is enough to estimate the sun
direction. In the indoor environment, we can set a larger
m for simulating multiple main light sources. We use the
estimated ambient light value as the values of the remained
points in the radiance map to simulate the sky outdoor and
the other weak light sources indoor.

As shown in Figure 4, a light ray R in 3D space can be
described as:

R = ILL (1)

where IL is the intensity of the light ray R, L represents
the unit normal vector along the ray direction. Suppose that
the irradiance on surface sur caused by ray R can be a
combination of the irradiance caused by ray R1 = IL1

L1

and ray R2 = IL2
L2:

IL1
L1 ·N + IL2

L2 ·N = (IL1
+ IL2

) ·N = ILL ·N (2)

where N is the unit normal vector of the surface sur.
However, not all the surface obey Eq. 2. The surface should
be visible to R, R1 and R2 (Eq. 3). The cosine of the
angles between the three rays and the surface normal N
should be above zero (Eq. 4). Thus, for using sparse light
sources to approximate the illumination in real scenes, we
would mostly choose the surfaces obeying Eq. 3 and Eq. 4
to estimate the sparse radiance map.

Vis(sur, L) = Vis(sur, L1) = Vis(sur, L2) = 1 (3)

L1 ·N > 0, L1 ·N > 0, L ·N > 0 (4)

Estimating illumination and lighting virtual objects.
According to the intrinsic component decomposition, the
intensity of an image scene pixel on a surface can be
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Figure 5. An example of the estimating and the rendering result.(a) is the
input image. (b) A virtual object is rendered in (b). A black ball rendered
with the estimated sparse radiance map is on the left corner of (b).

approximately decomposed into the irradiance collected by
the surface in that point and the reflectance of the surface:

I = S ∗K (5)

where I , S and K are the pixel values of the input
scene image, the shading image and the reflectance image,
respectively. For a Lambertian surface, the irradiance can be
represented by [20] :

S = Ia +

m∑
i=1

ILiLi ·N (6)

where Ia is the ambient light of the scene. ILi
and Li are the

intensity and direction of the ith ray reaching surface sur.
m is the number of the rays reaching surface sur. N and
K are the normal and the reflectance estimated in Section
III-A. Then we employ Levenberg-Marquardt algorithm [21]
to obtain the solution of minimization between the shading
image and the estimated irradiance:

arg max
(Ia,I1,I2,...,Im)

ns∑
j=1

(Sj − (Ia +

m∑
i=1

ILi
Li ·N)) (7)

where Sj is the value of the shading image of the jth 3D
triangle surface estimated in Section III-A. ns is the number
of the triangle surfaces used for illumination estimation. The
parameters needed to be estimated of the sparse radiance
map are :

SRMpara = Ia, I1, I2, . . . , Im (8)

The estimated I1, I2, . . . , Im form the sparse radiance
map are considered as the main light sources. We use the
estimated ambient light value as the values of the remained
points in the sparse radiance map. With the estimated sparse
radiance map, we light objects in the real scene using an off-
the-shelf rendering software. An example of the estimated
sparse radiance map and the rendering result is shown in
Figure 5.
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Figure 6. An example of indoor result. The shadow of the virtual bear is
quite similar to those of the real cups.

(a) Input (b) Madsen et al. (c) Our Result

Figure 7. Comparison with Madsen et al. [3]. Our estimated and rendered
shadow are nearly the same as that of Madsen et al. with only a single
image.

IV. EXPERIMENTS

In this section, we will show the rendering results of
outdoor and indoor images, and comparisons with the work
of Madsen et al. [3] and Lalonde et al. [4].

Outdoor and indoor results. We test our method in both
outdoor and indoor scenarios. As shown in Figure 1 and 5,
we show examples of outdoor images. Unlike Madsen et al.
[3] and Lalonde et al. [4], who only treat outdoor images
with their sun and sky doom models of outdoor illumination,
our sparse radiance map can also be used to estimate indoor
illumination, as shown in Figure 6. Notice how the shadows
on the ground or the desktop, and shading and reflections
on the virtual models are consistent with the image.

Comparisons with related work. Madsen et al. [3]
need to know the date, time and position on Earth of the
image shooting. They use such information to infer the sun
direction. Lots of consumer photos have not recorded the
EXIF information containing the date or position of the
image shooting. As shown in Figure 7, our work can estimate
the scene illumination from only a single image without the
imaging information.

To the best of our knowledge, the work with the most
similar objective to ours is that of Lalonde et al. [4]. They
use a dataset of 6 million images for training the illumination
inference model and estimate a sun and sky doom model of
outdoor illumination, which can be only used for outdoor
images. They directly use the three most evident appearance
cues to estimate the illumination in a scene. However, the
experiments show that, with our sparse radiance map and

Ground truth shadow
Lalonde et al. 
Our estimate

Figure 8. Vatican sequence: Comparison with Lalonde et al. [4]. We also
render a blue cylinder into the real scene and obtain the similar shadow
direction to that of [4]. The red shadow is the ground truth. The grey
one and the green one are the estimated shadows of [4] and our method,
respectively.

the current scene understanding technologies of estimating
scene geometry and intrinsic components, we can obtain the
similar estimation and rendering results as [4], as shown in
Figure 8, although our cues and the whole estimation process
are quite different.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a novel method of single image
based illumination estimation for lighting virtual object in
real scene. The main contribution of our work lies in using
a simple sparse radiance map based illumination model to
combine the estimated geometry and intrinsic components
to estimate the scene illumination. With the help of current
scene understanding technologies of estimating scene geom-
etry and intrinsic components, we achieve convincing results
with the state of art.

Discussion and future work. The illumination model
used in this work is based on the classic Phong model [20]
and merely a local illumination model. Although this simple
model is enough for most outdoor and indoor consumer
photos with less complex illumination by using current



scene understanding technologies, for some indoor images
with more complex illumination, this simple model is not
enough to obtain plausible estimation and rendering results.
Maybe the more realism global illumination model can be
employed to estimate the complex illumination. However,
more parameters such as materials, and more estimating
accuracy are required by using future scene understanding
technologies. But we believe this is a trend for future illu-
mination estimation work. The estimated geometry model
is not quite accuracy. The occlusion between the virtual
shadow and the real objects, also the real shadow and the
virtual objects, and the folding of the shadows are not
simulated very well. And this may rely on more accurate
3D reconstruction in the future work.
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